Space Media Network Trade News Advertising

news.terradaily.com
May 18, 2024

Business ventures at Interndaily.com

Younger trees champion carbon capture

The image shows the estimated age of forests around the world, according to Besnard et al., 2021. Thanks to their ability to absorb and store carbon dioxide from the atmosphere, forests have long been recognised as a key tool in the fight against climate change. New research, however, based ESA's SMOS L-band satellite L-band data has found that, surprisingly, young trees are champions at carbon capture.
Advertisement

Discover Africa's Potential
Insights on Africa's latest trade trends
AI-driven news routing for your team
www.africadaily.net
https://www.africadaily.net/



Younger trees champion carbon capture

by Staff Writers
Paris (ESA) Oct 09, 2023
Thanks to their ability to absorb and store carbon dioxide from the atmosphere, forests have long been recognised as a key tool in the fight against climate change - but not all forests are equal. New research based on data from ESA's SMOS satellite mission has found that, surprisingly, young trees are champions at carbon capture.

To better understand the complexities of our climate system and predict the effects of change, scientists need to be able to account for carbon storage. However, their efforts have been thwarted by uncertainty when it comes to the carbon contained in vegetation on land, making it difficult to estimate the global carbon balance - until now.

A paper published recently in the journal Nature Geosciences describes how ESA-funded scientists have, for the first time, directly observed how terrestrial carbon stocks have changed at regional and global scales using observations from ESA's SMOS satellite.

The results have important implications for climate change mitigation and effective monitoring of progress towards net zero goals by 2050, as laid out in the Paris Agreement.

The team, led by researchers at the French Laboratoire des Sciences du Climat et de l'Environnement (LSCE), found that land-based carbon stocks increased by an average of 510 million tonnes of carbon per year during the 2010-2019 study period.

The gain in carbon-rich biomass was largely by boreal and temperate forests, with tropical forests adding only small increases in carbon - the result of deforestation and agricultural disturbances.

Surprisingly, the research, which was undertaken as part of ESA's Climate Change Initiative RECCAP-2 project, found that young and middle-aged forests - comprising trees between 50 to 140 years of age - played a dominant role in absorbing atmospheric carbon and accumulating biomass.

However, forests that were 140 years old and above were approximately carbon neutral, which is the opposite of vegetation model predictions.

Hui Yang, from LSCE, said, "Vegetation models that predict terrestrial carbon stores do not represent forest demographics and tend to overestimate the carbon sequestration capacity of old-growth forests and underestimate of carbon absorbed by boreal and temperate forests.

"Using space-based observations we can track and better understand long-term variations in terrestrial living-biomass. Our study highlights the importance of forest age in predicting carbon dynamics in a changing climate.

"Delaying and decreasing the harvesting of timber from young forests could be a way forward for climate-friendly forest management."

ESA's Earth Explorer Soil Moisture and Ocean Salinity (SMOS) satellite has been in orbit since 2009. The satellite carries an interferometric radiometer that operates in the L-band microwave range.

This captures 'brightness temperature' images to derive, as the mission's name suggests, global maps of moisture in surface soils and salt in ocean surface waters.

Recent technical advances that remove interference and data artifacts have made it possible to obtain sufficiently robust measurements of L-band microwave vegetation optical depth (L-VOD) to assess live woody vegetative biomass, and diagnose global changes in terrestrial carbon stocks.

The L-VOD used in this study was developed by INRAE Bordeaux.

Philippe Ciais, also from LSCE, explained, "Using L-VOD data from SMOS has provided valuable insights into global terrestrial carbon storage.

"The study's findings have important implications for climate change mitigation efforts, as they cont ribute to a more accurate estimation of the global carbon balance which is needed to inform and track progress towards achieving the Paris Agreement goals."

Another ESA Earth Explorer mission called Biomass, which is slated to launch later next year, will also shed new light on forest carbon. It will carry a novel P-band synthetic aperture radar to deliver crucial information about the state of our forests and how they are changing, and to further our knowledge of the role forests play in the carbon cycle.

ESA's Director of Earth Observation Programmes, Simonetta Cheli, noted, "The use of SMOS to understand more about carbon capture by forests is another example of one of our Earth Explorer research missions surpassing expectations.

"With the carbon cycle so fundamental to our climate system and to the health of our planet, we are busy preparing the Biomass Earth Explorer mission, which is dedicated to measuring forest height and biomass. Information from this upcoming mission will not only shed new light on the carbon cycle, but also contribute to international efforts to reduce carbon emissions from deforestation and land degradation."


Artificial Intelligence Analysis

Defense Industry Analyst:

8/10 – The research discussed in this article is highly relevant to the defense industry, as it provides valuable insight into the process of carbon sequestration, which is essential to the fight against climate change and the Paris Agreements net zero goals. The article also provides an important reminder of the importance of forest conservation and the need for effective monitoring of vegetation on land to ensure accurate estimates of global carbon balance.

Stock Market Analyst:

5/10 – This article does not provide much insight into the stock market and its implications for stock performance. However, the article does provide a reminder of the importance of forestry and its role in the fight against climate change, which could have implications for certain sectors that are exposed to climate change-related risks.

General Industry Analyst:

7/10 – This article is highly relevant to the general industry analyst, as it provides valuable information on the process of carbon sequestration and its role in the fight against climate change. The article also highlights the importance of forests in carbon storage and the need for effective monitoring of terrestrial carbon stocks to ensure accurate estimates of global carbon balance.

Analyst

Summary

: This article describes the findings of a research project conducted by the French Laboratoire des Sciences du Climat et de l Environnement (LSCE), which used data from ESA’s SMOS satellite mission to observe the changes in terrestrial carbon stocks at regional and global scales. The research found that land-based carbon stocks increased by an average of 510 million tonnes of carbon per year during the 2010-2019 study period, and that boreal and temperate forests were largely responsible for this gain. Surprisingly, the research also found that young and middle-aged forests (comprising trees between 50 to 140 years of age) played a dominant role in absorbing atmospheric carbon and accumulating biomass. This research has important implications for climate change mitigation and effective monitoring of progress towards net zero goals by 2050, as laid out in the Paris Agreement.

The findings of this research correlate with significant events and trends in the space and defense industry over the past 25 years, including increasing awareness of the impact of climate change and the need for sustainable solutions to combat it. The research also highlights the importance of forests in carbon storage, which is a key factor in mitigating the effects of climate change.

Investigative

Question:

  • 1.What strategies could be implemented to ensure accurate estimates of global carbon balance?
  • 2.What role could the defense industry play in conserving forests to increase carbon capture?
  • 3.
What initiatives are currently being implemented to ensure that terrestrial carbon stocks are monitored effectively?4.What other strategies could be employed to ensure that young and middle-aged forests are able to absorb and store carbon dioxide?5.What potential risks could arise from inaccurate estimates of global carbon balance?

This AI report is generated by a sophisticated prompt to a ChatGPT API. Our editors clean text for presentation, but preserve AI thought for our collective observation. Please comment and ask questions about AI use by Spacedaily. We appreciate your support and contribution to better trade news.


SolarDaily: Power Pioneers
Sponsor AI Trade News for solar insights.
Navigate the world of renewable energy.
www.Solardaily.com




Next Story




Buy Advertising About Us Editorial & Other Enquiries Privacy statement

The content herein, unless otherwise known to be public domain, are Copyright 1995-2023 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement