Space Media Network Trade News Advertising

news.marsdaily.com
June 30, 2024

Rocket science: Picking up snails.

Photocatalytic CO2 conversion for artificial carbon cycle at extraterrestrial sites

With the discovery of the abundant reserve of CO2 and water on extraterrestrial sites, it has been proposed that photocatalytic CO2 conversion can also be implemented at extraterrestrial sites to build up the artificial carbon cycle for providing propellants and life supports for space missions.
Advertisement

Unleash Business Potential
Harness AI-powered CRM system
Gain actionable insights
www.TheMBAMachine.com
https://www.TheMBAMachine.com



Photocatalytic CO2 conversion for artificial carbon cycle at extraterrestrial sites

by Staff Writers
Dalian, China (SPX) Aug 30, 2023
Today, space missions mainly rely on the transportation of basic needs from the Earth, which is extremely challenging and logistically impossible when we aim to develop stations or habitats on extraterrestrial sites such as the Moon and Mars.

For example, an astronaut needs almost a kilogram of oxygen per day to sustain their life. Therefore, tons of oxygen have to be transported to build a station at extraterrestrial sites every year, raising the cost and risk of the mission.

It is expected such a situation can be changed by building the artificial carbon cycle on the extraterrestrial sites. On Earth, carbon cycle allows the carbon atoms to move from the atmosphere (presenting in gaseous carbon compounds such as CO2 and CH4) to Earth (presenting in the form of sugar, starch, etc.), and finally back to the atmosphere to close the loop.

The energy input of such a biogeochemical cycle is provided by solar energy, where plants or other organisms absorb the solar energy to convert CO2 and H2O into carbon-based compounds and oxygen via photosynthesis.

Given that the currently targeted extraterrestrial sites (i.e., Moon and Mars) own abundant sunlight irradiation and have shown abundant CO2 and H2O reserves, such a photosynthesis strategy can be adopted to build up artificial carbon cycle system at extraterrestrial sites for providing sufficient propellants and life supports for space missions.

Given this background, artificial photosynthesis through photocatalytic CO2 conversion holds great promise to achieve a sustainable cycle. Specifically, such a strategy can imitate the role of green plants' photosynthesis and is expected to reconstruct the carbon cycle in nature on Earth, which is currently interrupted due to excess CO2 emission. This artificial photosynthesis strategy, if it is successfully implemented at extraterrestrial sites as a part of ISRU, can also allow the artificial carbon cycle to be built at the extraterrestrial sites.

Up to today, various products have been successfully produced through photocatalytic CO2 conversions, such as CO, CH4, CH3OH, and HCHO. Nevertheless, the photocatalytic CO2 conversion efficiency remains dissatisfying to meet the practical applications. Thus, the development of photocatalytic CO2 conversion with excellent photoconversion efficiency and product selectivity is highly sought for its applications not only on the Earth but also on extraterrestrial sites.

Recently, a research team lead by Prof. Yujie Xiong from University of Science and Technology of China write a Comment on extraterrestrial photocatalytic CO2 conversion to provide brief and clear guidelines for the development of photocatalytic CO2 conversion and its application beyond the Earth.

They first outline the fundamental and general principles of photocatalytic CO2 conversion. Then, they summarize the problems that can be encountered by photocatalysis during its implementation at extraterrestrial sites. Finally, perspectives on the development in this field are provided. The results were published in Chinese Journal of Catalysis.

Research Report:Photocatalytic CO2 conversion: Beyond the earth


Artificial Intelligence Analysis

Litany:

Space missions rely on transportation of basic needs from Earth which is logistically impossible. Astronauts need 1 kg of oxygen per day to sustain their life and tons of oxygen need to be transported to extraterrestrial sites raising the cost and risk of the mission. It is expected that artificial carbon cycle can be built on extraterrestrial sites using solar energy to convert CO2 and H2O into carbon based compounds and oxygen. Artificial photosynthesis through photocatalytic CO2 conversion can imitate the role of green plants and reconstruct the carbon cycle in nature.

Myth/Metaphor:

The mission to build artificial carbon cycle on extraterrestrial sites is analogous to the mission to rebuild the carbon cycle on Earth which has been interrupted due to excess CO2 emission. The artificial photosynthesis strategy can be seen as a symbol of hope to achieve a sustainable cycle and create a more sustainable future for space missions.

This AI report is generated by a sophisticated prompt to a ChatGPT API. Our editors clean text for presentation, but preserve AI thought for our collective observation. Please comment and ask questions about AI use by Spacedaily. We appreciate your support and contribution to better trade news.


Navigate Nuclear Policy
Stay on top of global nuclear policies
AI-powered updates: Your team's policy protocol
www.nuclearpowerdaily.com




Next Story




Buy Advertising About Us Editorial & Other Enquiries Privacy statement

The content herein, unless otherwise known to be public domain, are Copyright 1995-2023 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement