Space Media Network Trade News Advertising

news.solardaily.com
July 02, 2024

Unveil Jupiter's upper atmosphere at Saturndaily.com

New solar cell material could be used in space

illustration only
Advertisement

Solardaily.com: Power to Perform
Custom newsletters tailored for your needs.
Shine bright with contextual ads.
www.Solardaily.com
https://www.spacemedianetwork.com



New solar cell material could be used in space

by Staff Writers
Warwick UK (SPX) Jan 05, 2023
Research led by the University of Warwick will investigate a new type of solar cell material, which could be used in space, in a bid to reduce reliance on fossil fuels.

The European Research Council (ERC) has approved a five-year study which will delve into the atomic-level structure of a new type of solar cell material. This will address issues including stability and lifespan of metal halide perovskite compounds, which decrease in high humidity, strong sunlight and at elevated temperatures.

Interestingly, while the properties of perovskite solar cells change in a range of atmospheric conditions, they remain remarkably stable outside the Earth's atmosphere. This points to the potential for harvesting energy in space - a topical area of research, after the European Space Agency revealed it would be investigating whether satellites could beam electricity back to Earth earlier this year.

Using Nuclear Magnetic Resonance (NMR- an analytical chemistry technique that harnesses high magnetic fields and radiofrequencies targeted at atomic nuclei) scientists hope to answer an enduring question: what is causing this type of solar cell material to degrade at the atomic level?

The ERC Starting Grant of 2.2m pounds will involve the purchase of a 400 MHz solid-state NMR spectrometer worth 900,000 pounds, with unique capabilities that are currently not available in West Midlands. It will be installed specifically for this project, enabling researchers to investigate the atomic-level structure of solar cells. The eventual aim is to help improve the durability of these devices, so they can be relied on for decades to come.

What has already struck scientists is the viability of these new solar cells in applications where currently used silicon solar cells fall short: indoor light harvesting, use on highly flexible substrates, such as foils and fabrics, and in windows which require the material to be partially transparent.

The research will be led by Dr Dominik J. Kubicki, an Assistant Professor in the Department of Physics, University of Warwick. He said: "This study will help diversify sustainable energy sources and explore more options in the quest to reduce reliance on fossil fuels. We're keen to understand more about why these solar cells degrade in different atmospheric conditions at the atomic level, so we can design new, better materials and ensure maximum efficiency of this new sustainable energy source.

"Silicone is the current material used in solar cells and while those devices have a long durability of over 20 years, they have certain limitations. Solar cells need to be relatively thick; silicon is brittle, and it succumbs to cosmic radiation.

"Metal halide perovskites enable us to overcome these limitations, diversify the ways in which we can harvest solar energy, and apply them in contexts we had not previously anticipated. Investigating these materials will be very exciting, and we hope to find out how to make them more stable."


Artificial Intelligence Analysis

This AI report is generated by a sophisticated prompt to a ChatGPT API. Our editors clean text for presentation, but preserve AI thought for our collective observation. Please comment and ask questions about AI use by Spacedaily. We appreciate your support and contribution to better trade news.


SeedDaily: Agricultural Amplification
Custom newsletters for the farm-friendly.
Get noticed by agritech authorities.
www.Seeddaily.com




Next Story




Buy Advertising About Us Editorial & Other Enquiries Privacy statement

The content herein, unless otherwise known to be public domain, are Copyright 1995-2023 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement