Space Media Network Trade News Advertising

news.biofueldaily.com
July 02, 2024

Defy gravity with us at Moondaily.com

New process coverts CO2 into fuel more efficiently than photosynthesis

A hierarchical self-assembly photocatalytic system (left) mimics the natural photosynthesis apparatus of a purple bacteria, called Rhodobacter sphaeroides (right), achieving 15% solar-to-fuel efficiency when converting carbon dioxide into methane.
Advertisement

Tech Twister
Stay in the eye of the technology twister!
Blow away old habits with AI-driven updates!
www.winddaily.com
https://www.winddaily.com/



New process coverts CO2 into fuel more efficiently than photosynthesis

by Staff Writers
Hong Kong (SPX) Aug 04, 2023
A joint research team from City University of Hong Kong (CityU) and collaborators recently developed a stable artificial photocatalytic system that is more efficient than natural photosynthesis. The new system mimics a natural chloroplast to convert carbon dioxide in water into methane, a valuable fuel, very efficiently using light. This is a promising discovery, which could contribute to the goal of carbon neutrality.

Photosynthesis is the process by which chloroplasts in plants and some organisms use sunlight, water and carbon dioxide to create food or energy. In past decades, many scientists have tried to develop artificial photosynthesis processes to turn carbon dioxide into carbon-neutral fuel.

"However, it is difficult to convert carbon dioxide in water because many photosensitizers or catalysts degrade in water," explained Professor Ye Ruquan, Associate Professor in the Department of Chemistry at CityU, one of the leaders of the joint study. "Although artificial photocatalytic cycles have been shown to operate with higher intrinsic efficiency, the low selectivity and stability in water for carbon dioxide reduction have hampered their practical applications."

In the latest study, the joint-research team from CityU, The University of Hong Kong (HKU), Jiangsu University and the Shanghai Institute of Organic Chemistry of the Chinese Academy of Sciences overcame these difficulties by using a supramolecular assembly approach to create an artificial photosynthetic system. It mimics the structure of a purple bacteria's light-harvesting chromatophores (i.e. cells that contain pigment), which are very efficient at transferring energy from the sun.

The core of the new artificial photosynthetic system is a highly stable artificial nanomicelle - a kind of polymer that can self-assemble in water, with both a water-loving (hydrophilic) and a water-fearing (hydrophobic) end.

The nanomicelle's hydrophilic head functions as a photosensitizer to absorb sunlight, and its hydrophobic tail acts as an inducer for self-assembly. When it is placed in water, the nanomicelles self-assemble due to intermolecular hydrogen bonding between the water molecules and the tails. Adding a cobalt catalyst results in photocatalytic hydrogen production and carbon dioxide reduction, resulting in the production of hydrogen and methane.

Using advanced imaging techniques and ultrafast spectroscopy, the team unveiled the atomic features of the innovative photosensitizer. They discovered that the special structure of the nanomicelle's hydrophilic head, along with the hydrogen bonding between water molecules and the nanomicelle's tail, make it a stable, water-compatible artificial photosensitizer, solving the conventional instability and water-incompatibility problem of artificial photosynthesis. The electrostatic interaction between the photosensitizer and the cobalt catalyst, and the strong light-harvesting antenna effect of the nanomicelle improved the photocatalytic process.

In the experiment, the team found that the methane production rate was more than 13,000umol h-1 g-1, with a quantum yield of 5.6% over 24 hours. It also achieved a highly efficient solar-to-fuel efficiency rate of 15%, surpassing natural photosynthesis.

Most importantly, the new artificial photocatalytic system is economically viable and sustainable, as it doesn't rely on expensive precious metals. "The hierarchical self-assembly of the system offers a promising bottom-up strategy to create a precisely controlled, high-performance artificial photocatalytic system based on cheap, Earth-abundant elements, like zinc and cobalt p orphyrin complexes," said Professor Ye.

Professor Ye said he believes the latest discovery will benefit and inspire the rational design of future photocatalytic systems for carbon dioxide conversion and reduction using solar energy, contributing to the goal of carbon neutrality.

The findings were published in the scientific journal "Nature Catalysis" under the title "Artificial spherical chromatophore nanomicelles for selective CO2 reduction in water".

Research Report:Artificial spherical chromatophore nanomicelles for selective CO2 reduction in water


Artificial Intelligence Analysis

AI News Routing

  • CTO:

    Headline: A joint research team from City University of Hong Kong and collaborators recently developed a stable artificial photocatalytic system that is more efficient than natural photosynthesis.

    Score: 9

  • Sr. Navigation Engineer:

    Headline: The core of the new artificial photosynthetic system is a highly stable artificial nanomicelle, a kind of polymer that can self assemble in water, with both a water loving, hydrophilic, and a water fearing, hydrophobic, end.

    Score: 8

  • Business Development Manager:

    Headline: In past decades, many scientists have tried to develop artificial photosynthesis processes to turn carbon dioxide into carbon neutral fuel.

    Score: 7

  • Fleet Management Solutions Lead:

    Headline: The nanomicelles hydrophilic end can act as a photosensitizer, while its hydrophobic end can act as a highly selective catalyst to reduce carbon dioxide to methane in water

    Score: 8

  • Personal and Asset Tracking Specialist:

    Headline: This is a promising discovery, which could contribute to the goal of carbon neutrality.

    Score: 8

  • Galileo Project Analyst:

    Headline: Although artificial photocatalytic cycles have been shown to operate with higher intrinsic efficiency, the low selectivity and stability in water for carbon dioxide reduction have hampered their practical applications.

    Score: 7

  • Overall score: 8

    This AI report is generated by a sophisticated prompt to a ChatGPT API. Our editors clean text for presentation, but preserve AI thought for our collective observation. Please comment and ask questions about AI use by Spacedaily. We appreciate your support and contribution to better trade news.


  • Step into the Future
    AI-Powered CRM
    Be the change
    www.TheMBAMachine.com




    Next Story




    Buy Advertising About Us Editorial & Other Enquiries Privacy statement

    The content herein, unless otherwise known to be public domain, are Copyright 1995-2023 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement