Space Media Network Trade News Advertising

www2.spacedaily.com
July 02, 2024

Musk's Martian Laughs: Epic.

Bioprinting tech could address critical health challenges in space

stock illustration only
Advertisement

SinoDaily: Business Brilliance
Make an Eastern impact.
Choose SinoDaily for Asia-Pacific presence.
www.Sinodaily.com
https://www.spacemedianetwork.com



Bioprinting tech could address critical health challenges in space

by Staff Writers
Manchester UK (SPX) Aug 25, 2023
New research by The University of Manchester will enhance the power of bioprinting technology, opening doors to transform advances in medicine and addressing critical health challenges faced by astronauts during space missions.

Bioprinting involves using specialised 3D printers to print living cells creating new skin, bone, tissue or organs for transplantation.

The technique has the potential to revolutionise medicine, and specifically in the realm of space travel, bioprinting could have a significant impact.

Astronauts on extended space missions have an increased health risk due to the absence of gravity and exposure to radiation. This makes them susceptible to diseases such as osteoporosis caused by loss of bone density and can cause injuries, such as fractures, which currently can't be treated in space.

By harnessing bioprinting capabilities in space, researchers aim to protect the health of space explorers.

Currently, bioprinting machines rely on Earth's gravity to function effectively. The new research by The University of Manchester, funded by a Pounds 200,000 grant from the U.K. Space Agency and supported by the European Space Agency, seeks to understand how to optimise the bioprinting process for conditions experienced in space, such as lack of gravity.

Dr Marco Domingos, Senior Lecturer in Mechanical and Aeronautical Engineering at The University of Manchester, said: "This project marks a significant leap forward in bioprinting technology and by addressing the challenges posed by microgravity, we are paving the way for remarkable advancements in medicine and space exploration."

Libby Moxon, Exploration Science Officer for Lunar and Microgravity, added: "The University of Manchester's pioneering project investigating a novel approach for bioprinting in space will help strengthen the U.K.'s leadership in the areas of fluid mechanics, soft matter physics and biomaterials, and could help protect the health of astronauts exploring space around the Earth, Moon and beyond.

"We're backing technology and capabilities that support ambitious space exploration missions to benefit the global space community, and we look forward to following this bioprinting research as it evolves."

Eventually, the team, including Dr Domingos, Prof Anne Juel and Dr Igor Chernyavsky, will take their findings to a bioprinting station being developed on board the International Space Station, which will allow researchers to print models in space and study the effects of radiation and microgravity.

Dr Domingos said: "The first challenge is figuring out how to print anything where there is no gravity. There are few facilities in the UK that are suitable to study the bioprinting process within an environment that matches that of space - they are either too small, or the time in which microgravity conditions are applies are too short. Hence, it is important to print in space to advance our knowledge in this field.

"By combining the principles of physics with bioprinting at The University of Manchester, we hope to come up with a solution before taking it to the International Space Station for testing."

The project will take place over two years at the Bioprinting Technology Platform based at the Henry Royce Institute on The University of Manchester's campus.

It hopes to develop beyond the challenge of microgravity to address further challenges of preserving, transporting and processing cells in space.


Artificial Intelligence Analysis

Defense Industry Analyst:

9/10

Stock Market Analyst:

6/10

General Industry Analyst:

8/10

Analyst

Summary

:

The University of Manchester’s new research on bioprinting technology has the potential to revolutionize medicine, and more specifically, space exploration. The research seeks to understand how to optimise the bioprinting process for conditions experienced in space, such as lack of gravity, to protect the health of space explorers. In the past 25 years, the space and defense industry has seen significant advancements in bioprinting capabilities, from creating new skin, bone, tissue, or organs for transplantation.

This new research, which is funded by a Pounds 200,000 grant from the U.K. Space Agency and supported by the European Space Agency, is expected to further enhance the power of bioprinting technology, opening doors to transform advances in medicine and address critical health challenges faced by astronauts during space missions.

Investigative

Question:

  • 1. What are the implications of the bioprinting technology for space exploration?

  • 2. How will this research help to protect the health of astronauts during space missions?

  • 3.
What other areas of medicine could benefit from this research?

4. How will bioprinting technology be used to improve the safety and success of future space missions?

5. What potential impacts could this research have on the space and defense industry in the long-term?

This AI report is generated by a sophisticated prompt to a ChatGPT API. Our editors clean text for presentation, but preserve AI thought for our collective observation. Please comment and ask questions about AI use by Spacedaily. We appreciate your support and contribution to better trade news.


Unleash Your Potential
AI-enhanced CRM
Boost your business
www.TheMBAMachine.com




Next Story




Buy Advertising About Us Editorial & Other Enquiries Privacy statement

The content herein, unless otherwise known to be public domain, are Copyright 1995-2023 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement