Space Media Network Trade News Advertising

www2.spacedaily.com
June 30, 2024

Seeds of knowledge grow at Seed Daily!

Astronomers reveal new features of galactic black holes

file illustration only
Advertisement

Hooterville Happenings
Discover farm living à la Hooterville!
Sow seeds of knowledge with AI-curated news!
www.terradaily.com
https://www.terradaily.com/



Astronomers reveal new features of galactic black holes

by Staff Writers
Las Vegas NV (SPX) Jul 27, 2023
Black holes are the most mysterious objects in the universe, with features that sound like they come straight from a sci-fi movie. Stellar-mass black holes with masses of roughly 10 suns, for example, reveal their existence by eating materials from their companion stars. And in some instances, supermassive black holes accumulate at the center of some galaxies to form bright compact regions known as quasars with masses equal to millions to billions of our sun. A subset of accreting stellar-mass black holes that can launch jets of highly magnetized plasma are called microquasars.

An international team of scientists, including UNLV astrophysicist Bing Zhang, reports in the July 26 issue of Nature a dedicated observational campaign on the Galactic microquasar dubbed GRS 1915+105. The team revealed features of a microquasar system that have never before been seen.

Using the massive Five-hundred-meter Aperture Spherical radio Telescope (FAST) in China, astronomers discovered a quasi-periodic oscillation (QPO) signal in the radio band for the first time from any microquasar systems. QPOs are a phenomenon that astronomers use to understand how stellar systems like black holes function. And while they have been observed in X-rays from microquasars, their presence outside of this manner - as part of the system's radio emission - is unique.

"The peculiar QPO signal has a rough period of 0.2 seconds, or a frequency of about 5 Hertz," said Wei Wang, a professor with China's Wuhan University who led the team that made the discovery. "Such a signal does not always exist and only shows up under special physical conditions. Our team was lucky enough to catch the signal twice - in January 2021 and June 2022, respectively."

According to UNLV's Zhang, director of the Nevada Center for Astrophysics and one of the study's corresponding authors, this unique feature may provide the first evidence of activity from a "jet" launched by a Galactic stellar-mass black hole. Under certain conditions, some black hole binary systems launch a jet - a mix of parallel beams of charged matter and a magnetic field that moves with a swiftness approaching the speed of light.

"In accreting black hole systems, X-rays usually probe the accretion disk around the black hole while radio emission usually probes the jet launched from the disk and the black hole," said Zhang. "The detailed mechanism to induce temporal modulation in a relativistic jet is not identified, but one plausible mechanism would be that the jet is underlying precession, which means the jet direction is regularly pointing towards different directions and returns to the original direction once every about 0.2 seconds."

Zhang said that a misalignment between the spin axis of the black hole and its accretion disk (extremely hot, bright spinning gasses surrounding the black hole) could cause this effect, which is a natural consequence of a dragging of spacetime near a rapidly spinning black hole.

"Other possibilities exist, though, and continued observations of this and other Galactic microquasar sources will bring more clues to understand these mysterious QPO signals," said Zhang.

Research Report:Subsecond periodic radio oscillations in a microquasar


Artificial Intelligence Analysis

This AI report is generated by a sophisticated prompt to a ChatGPT API. Our editors clean text for presentation, but preserve AI thought for our collective observation. Please comment and ask questions about AI use by Spacedaily. We appreciate your support and contribution to better trade news.


Treaties Beyond Earth
Up-to-date information on space treaties
Boost team performance with AI routing
www.spacewar.com




Next Story




Buy Advertising About Us Editorial & Other Enquiries Privacy statement

The content herein, unless otherwise known to be public domain, are Copyright 1995-2023 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement